Development of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells against Malignant Glioma

Song-Jae Lee, PhD.

Head of R&D Center

CellabMED Inc.

Republic of Korea

Education

- · Ph.D. in Biological Engineering, Inha University, Republic of Korea (2002~2007)
- · M.S. Dept. of Biotechnology, Inha Univ., Republic of Korea (1998~2000)
- · B.S. Dept. of Biotechnolgy, Inha Univ., Republic of Korea (1991~1998)

Professional Career

- · CellabMED Inc. (2019~present) : Head of R&D Center
- Yooyoung Pharm. (2011~2019) : Principal Research Scientist
- Boryung Pharm. (1999~2011) : Senior Research Scinetist

Summary of Lecture

Malignant glioma (MG) is the most common and devastating primary brain tumor, leading to death in most cases. Current treatment regimen of maximal cytoreductive surgery followed by chemo-/radiotherapy, hardly achieved long-term survival in spite of short-term benefits. Thus, T cell immunotherapy is emerging as a powerful strategy to treat cancer and may improve outcomes for patients with MG.

Interleukin-13 receptor $\alpha 2$ (IL-13R $\alpha 2$) is a promising target because of its abundant and specific expression in MG compare to low-grade glioma or normal brain. Moreover, patients expressing IL13R $\alpha 2$ have clinically shown a significant correlation with low survival rates. A number of IL13R $\alpha 2$ -targeting therapies, including CAR-T-targeting IL13R $\alpha 2$, IL13R $\alpha 2$ -targeted immunotoxins, IL13 expressing virus, anti-IL13R $\alpha 2$ antibody therapy, and IL13R $\alpha 2$ -targeted tumor vaccine, have been given in clinical trial and have proven to be safe.

In this study, we tried to verify the efficacy of newly developed YYB-103, an IL13R α 2-targeted CAR-T, using modified IL13 as an antigenbinding domain, which lowered the binding affinity for IL13R α 1 expressed in normal cells in *in vitro* and *in vivo* model, and the possibility of intravenous administration of YYB-103.